
Segmentation
OSTEP Chapters 16 & 17

Shin Hong

ITP 30002 Operating System

ITP 30002
Operating System

Motivation

• Internal fragmentation problem

- a process typically uses a small portion of an
address space in a sparse manner

- the rest of the address space remains unused
and wasted

• Redundant data

- The same piece of code may be loaded
redundantly if multiple processes use it

2023-04-06

Segmentation

2

ITP 30002
Operating System

Approach

• Ideas

1. split an address space into multiple pieces and manage each seperately

2. allocate the memory to each piece depending on the actual needs

• Define the address space of a process as a set of multiple segments

- a segment is a continuous memory region defined by a pair of base and
bounds addresses

- the available portion of the address space of a process can be
represented as a set of segments

- a segment is initially defined at a loading time
- a segment can be relocated, extended, or shrinked over time

• Let multiple processes share one segment if they use the same data

2023-04-06

Segmentation

3

ITP 30002
Operating System

Segmentation
• A process has three segments, code, heap and stack in an address space

• MMU is required to have three base-bounds pairs, and a mechanism to
identify which segment a memory access is on

- MMU will find the base value and add it to the offset part of a virtual address

• OS can change bounds on demand of a process to extend/shrink a segment

2023-04-06

Segmentation

4

program code

heap

stack

100
(0x0064)

32K + 100
(0x8064)

4200
(0x1068)

34K + 104
(0x8868)

ITP 30002
Operating System

Which Segment A Memory Access is On?

• By virtual address
- use top few bits as a segmentation indicator

- ex. virtual address 4200

• By instruction type

- referring the code segment if the address is derived from PC

- referring the stack segment if the address is derived from stack pointer

- referring the heap segment otherwise

2023-04-06

Segmentation

5

00: code
01: heap
11: stack

ITP 30002
Operating System

Segment Attributes

• A bit to indicate whether a segment grows forward or backward

- ex.

2023-04-06

Segmentation

6

• A bit to indicate whether a segment is for read-write or read-only

- ex.

ITP 30002
Operating System

Operating System Supports

• context switching

• serving requests to grow/shrink a segment

• managing free space in physical memory to deal with external
fragmentation problem

- compaction

- free-list management algorithms are applied

2023-04-06

Segmentation

7

ITP 30002
Operating System

Free-Space Management

• External fragmentation hurts memory utilization
- commonly happens for dynamic allocation of variable-length memory units

- example. with a 30-bytes address space

• alloc 15 bytes as A

• alloc 10 bytes as B

• free A (15 bytes)

• alloc 5 bytes as C

• alloc 15 bytes as D

2023-04-06

Segmentation

8

0 5 10 15 20 25 30

ITP 30002
Operating System

Segmentation

Free List

• maintains free space as a linked list of free chunks
(i.e., continuous unused memory regions)

• to allocate a chunk of size m

- find a node of a free chunk whose size is greater
than or equal to m

- split the free chunk if its size is greater than m

• to free an allocated memory chunk,

- add a node of the newly freed chunk to the free list

- merge adjacent chunks into a single larger chunk
(coalescing)

2023-04-06

9

addr:10

20

ITP 30002
Operating System

Segmentation

Allocation Strategies

• The ideal allocator should be fast and minimize fragmentation.

• Best fit: search through the free list and find the smallest chunks that are large enough
to afford the memory request (i.e., closest to what the user asks)

• Worst fit: find the largest chunk in order to keep large chunks remain in the free list

• First fit: find the first chunk that is large enough to afford the requested memory

• Next fit: conduct the first fit search from the node where the last search was stopped
(not from the beginning of the free list)

2023-04-06

10

Ex. the user asks 18
40

ITP 30002
Operating System

Embedding A Free List

• Example: 4096-byte memory

2023-04-06

Segmentation

11

ITP 30002
Operating System

2023-04-06

Segmentation

12

ITP 30002
Operating System

Slab Allocator

• Alternate strategy

• Slab is one or more physically contiguous pages

• If slab is full of used objects, next object allocated from empty
slab
- If no empty slabs, new slab allocated

• Benefits include no fragmentation, fast memory request satisf
action

2023-04-06

Segmentation

13

ITP 30002
Operating System

Slab Allocation

2023-04-06

Segmentation

14

ITP 30002
Operating System

Buddy System

• Allocates memory from fixed-size segment consisting of physically-
contiguous pages

• Memory allocated using power-of-2 allocator
- Satisfies requests in units sized as power of 2

- Request rounded up to next highest power of 2

- When smaller allocation needed than is available, current chunk split into two
buddies of next-lower power of 2
• Continue until an appropriately-sized chunk is available

• E.g., assume 256KB chunk available, there is a request of 21 KB
- Split into AL and AR of 128 KB each

• One further divided into BL and BR of 64 KB

- One further into CL and CR of 32 KB each – one used to satisfy request

• Advantage – quickly coalesce unused chunks into larger chunk

• Disadvantage - fragmentation

2023-04-06

Segmentation

15

ITP 30002
Operating System

Buddy System Allocator

2023-04-06

Segmentation

16

	슬라이드 1: Segmentation OSTEP Chapters 16 & 17
	슬라이드 2: Motivation
	슬라이드 3: Approach
	슬라이드 4: Segmentation
	슬라이드 5: Which Segment A Memory Access is On?
	슬라이드 6: Segment Attributes
	슬라이드 7: Operating System Supports
	슬라이드 8: Free-Space Management
	슬라이드 9: Free List
	슬라이드 10: Allocation Strategies
	슬라이드 11: Embedding A Free List
	슬라이드 12
	슬라이드 13: Slab Allocator
	슬라이드 14: Slab Allocation
	슬라이드 15: Buddy System
	슬라이드 16: Buddy System Allocator

