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Motivation

* Internal fragmentation problem

-a process typically uses a small portion of an

address space in a sparse manner

-the rest of the address space remains unused

and wasted

* Redundant data

-The same piece of code may be
redundantly if multiple processes use it
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Approach 3

* |deas
1. split an address space into multiple pieces and manage each seperately
2. allocate the memory to each piece depending on the actual needs

* Define the address space of a process as a set of multiple segments

- a segment is a continuous memory region defined by a pair of base and
bounds addresses

- the available portion of the address space of a process can be
represented as a set of segments

- a segment is initially defined at a loading time

- a segment can be relocated, extended, or shrinked over time
Segmentation

* Let multiple processes share one segment if they use the same data .
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Segmentation 4

* A process has three segments, code, heap and stack in an address space

* MMU is required to have three base-bounds pairs, and a mechanism to
identify which segment a memory access is on

- MMU will find the base value and add it to the offset part of a virtual address
* OS can change bounds on demand of a process to extend/shrink a segment
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Which Segment A Memory Access is On?

* By virtual address
-use top few bits as a segmentation indicator
-ex. virtual address 4200

13121110 9 8 7 6 5 4 3 2 1 0 00: code
010000011 01000 '

| I , Ol:heap

Segment Offset 11: stack

* By instruction type
-referring the code segment if the address is derived from PC
-referring the stack segment if the address is derived from stack pointer
-referring the heap segment otherwise
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Segment Attributes

* A bit to indicate whether a segment grows forward or backward

- ex.

Segment Base

Size (max 4K)

Grows Positive?

COdeoo 32K 2K 1
Heapo: 34K 3K 1
Stack1 1 28K 2K 0

* A bit to indicate whether a segment is for read-write or read-only

- ex.

Segment Base Size (max4K) Grows Positive? Protection
Codeoo 32K 2K 1 Read-Execute
Heapo1 34K 3K 1 Read-Write
Stack; 28K 2K 0 Read-Write
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Operating System Supports

* context switching

* serving requests to grow/shrink a segment

* managing free space in physical memory to deal with external

fragmentation problem

-compaction

-free-list management algorithms are applied
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Free-Space Management 8

* External fragmentation hurts memory utilization
-commonly happens for dynamic allocation of variable-length memory units
- example. with a 30-bytes address space
 alloc 15 bytes as A

alloc 10 bytes as B
free A (15 bytes)
alloc 5 bytes as C

alloc 15 bytes as D 0 5 10 15 20 25 30
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Free List

* maintains free space as a linked list of free chunks
(i.e., continuous unused memory regions)

* to allocate a chunk of size m

-find a node of a free chunk whose size is greater

than or equal tom

-split the free chunk if its size is greater than m

* to free an allocated memory chunk,
-add a node of the newly freed chunk to the free list
-merge adjacent chunks into a single larger chunk

(coalescing)

free used free

addr:0 addr:20

head — |o.40 — ‘len:i0 —> NULL

nead —» SEEES s BOCR1_ 1L

addr:0 addr:10 addr:21
head — 1710 ™ len:10 > lenig — > NULL

addr:0 addr:21
head — len:20 — len:9 —> NULL
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Allocation Strategies 10

The ideal allocator should be fast and minimize fragmentation.

Best fit: search through the free list and find the smallest chunks that are large enough
to afford the memory request (i.e., closest to what the user asks)

Worst fit: find the largest chunk in order to keep large chunks remain in the free list

First fit: find the first chunk that is large enough to afford the requested memory

Next fit: conduct the first fit search from the node where the last search was stopped
(not from the beginning of the free list)

Ex. the user asks 18 S :
head —» 10 — 30 — 40 —» 20 —» NULL egmentation
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Embedding A Free List

* Example: 4096-byte memory

head

>

size:

4088

next:

0

[virtual address: 16KB]
header: size field

header: next field (NULL is 0)

= the rest of the 4KB chunk

ptr

head

size: 100

magic: 1234567

size: 3980

next: 0

11

[virtual address: 16KB]

The 100 bytes now allocated

= The free 3980 byte chunk

1r ovuucs
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sptr

head

size: 100

magic: 1234567

[virtual address: 16KB]

= 100 bytes still allocated

size: 100

magic: 1234567

= 100 bytes still allocated
(but about to be freed)

= 100-bytes still allocated

>
size: 100
magic: 1234567
>
size: 3764
next: 0

The free 3764-byte chunk

head

sptr

size: 100

magic: 1234567

'
size: 100
next: 16708
>
size: 100

magic: 1234567

size: 3764

[virtual address: 16KB]

= 100 bytes still allocated

(now a free chunk of memory)

= 100-bytes still allocated

next: 0

-

= The free 3764-byte chunk

on

ystem



Slab Allocator

 Alternate strategy
* Slab is one or more physically contiguous pages

* |f slab is full of used objects, next object allocated from empty
slab

-1f no empty slabs, new slab allocated

* Benefits include no fragmentation, fast memory request satisf
action
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Slab Allocation
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Buddy System

* Allocates memory from fixed-size segment consisting of physically-
contiguous pages

* Memory allocated using power-of-2 allocator
- Satisfies requests in units sized as power of 2
- Request rounded up to next highest power of 2

- When smaller allocation needed than is available, current chunk split into two
buddies of next-lower power of 2

e Continue until an appropriately-sized chunk is available

e E.g., assume 256KB chunk available, there is a request of 21 KB
- Splitinto A_ and A; of 128 KB each
* One further divided into B, and B of 64 KB

- One further into C, and C; of 32 KB each — one used to satisfy request
* Advantage — quickly coalesce unused chunks into larger chunk
* Disadvantage - fragmentation
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Buddy System Allocator

physically contiguous pages

256 KB

128 KB 128 KB
AL AR
64 KB 64 KB
By B
| |
32 KB| |32 KB
CL Cr
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