ITP 30002 Operating System

Segmentation

OSTEP Chapters 16 & 17

Shin Hong

Motivation

* Internal fragmentation problem

-a process typically uses a small portion of an

address space in a sparse manner

-the rest of the address space remains unused

and wasted

* Redundant data

-The same piece of code may be
redundantly if multiple processes use it

loaded

0KB

16KB

32KB

48KB

64KB

Operating System

Code

Heap
'

(allocated but not in use)

t
Stack

Code

Heap
'

(allocated but not in use)

tack

ode

Heap
'

(allocated but not in use)

t
Stack

Relocated Process

Segmentation

ITP 30002
Operating System

2023-04-06

Approach 3

* |deas
1. split an address space into multiple pieces and manage each seperately
2. allocate the memory to each piece depending on the actual needs

* Define the address space of a process as a set of multiple segments

- a segment is a continuous memory region defined by a pair of base and
bounds addresses

- the available portion of the address space of a process can be
represented as a set of segments

- a segment is initially defined at a loading time

- a segment can be relocated, extended, or shrinked over time
Segmentation

* Let multiple processes share one segment if they use the same data .

Operating System
2023-04-06

Segmentation 4

* A process has three segments, code, heap and stack in an address space

* MMU is required to have three base-bounds pairs, and a mechanism to
identify which segment a memory access is on

- MMU will find the base value and add it to the offset part of a virtual address
* OS can change bounds on demand of a process to extend/shrink a segment

?:z program code Segment Base Size o8
2KB I(_:I(ég‘; giE %E Operating System
- Stack 28K 2K 6K
::Z heap (not in use)
s 100 - 32K+ 100 S
1 (0x0064) (0x8064) soxe | IoLNES
Heap
g ‘ Segmentation
4200 - 34K+ 104 46K
(0x1068) (0x8868) (not in use) ITP 30002
14K 1 Operating System
15Kl k
e 64KB 2023-04-06

Which Segment A Memory Access is On?

* By virtual address
-use top few bits as a segmentation indicator
-ex. virtual address 4200

13121110 9 8 7 6 5 4 3 2 1 0 00: code
010000011 01000 '

| I , Ol:heap

Segment Offset 11: stack

* By instruction type
-referring the code segment if the address is derived from PC
-referring the stack segment if the address is derived from stack pointer
-referring the heap segment otherwise

Segmentation

ITP 30002
Operating System

2023-04-06

Segment Attributes

* A bit to indicate whether a segment grows forward or backward

- ex.

Segment Base

Size (max 4K)

Grows Positive?

COdeoo 32K 2K 1
Heapo: 34K 3K 1
Stack1 1 28K 2K 0

* A bit to indicate whether a segment is for read-write or read-only

- ex.

Segment Base Size (max4K) Grows Positive? Protection
Codeoo 32K 2K 1 Read-Execute
Heapo1 34K 3K 1 Read-Write
Stack; 28K 2K 0 Read-Write

Segmentation

ITP 30002
Operating System

2023-04-06

Operating System Supports

* context switching

* serving requests to grow/shrink a segment

* managing free space in physical memory to deal with external

fragmentation problem

-compaction

-free-list management algorithms are applied

OKB

8KB

16KB

24KB

32KB

40KB

48KB

56KB

64KB

Not Compacted

Operating System

(not in use)

Allocated

(not in use)

Allocated

(not in use)

Allocated

OKB

8KB

16KB

24KB

32KB

40KB

48KB

56KB

64KB

Compacted

Operating System

Allocated

(not in use)

Segmentation

ITP 30002
Operating System

2023-04-06

Free-Space Management 8

* External fragmentation hurts memory utilization
-commonly happens for dynamic allocation of variable-length memory units
- example. with a 30-bytes address space
 alloc 15 bytes as A

alloc 10 bytes as B
free A (15 bytes)
alloc 5 bytes as C

alloc 15 bytes as D 0 5 10 15 20 25 30

Segmentation

ITP 30002
Operating System

2023-04-06

Free List

* maintains free space as a linked list of free chunks
(i.e., continuous unused memory regions)

* to allocate a chunk of size m

-find a node of a free chunk whose size is greater

than or equal tom

-split the free chunk if its size is greater than m

* to free an allocated memory chunk,
-add a node of the newly freed chunk to the free list
-merge adjacent chunks into a single larger chunk

(coalescing)

free used free

addr:0 addr:20

head — |o.40 — ‘len:i0 —> NULL

nead —» SEEES s BOCR1_ 1L

addr:0 addr:10 addr:21
head — 1710 ™ len:10 > lenig — > NULL

addr:0 addr:21
head — len:20 — len:9 —> NULL

2023-04-06

Allocation Strategies 10

The ideal allocator should be fast and minimize fragmentation.

Best fit: search through the free list and find the smallest chunks that are large enough
to afford the memory request (i.e., closest to what the user asks)

Worst fit: find the largest chunk in order to keep large chunks remain in the free list

First fit: find the first chunk that is large enough to afford the requested memory

Next fit: conduct the first fit search from the node where the last search was stopped
(not from the beginning of the free list)

Ex. the user asks 18 S :
head —» 10 — 30 — 40 —» 20 —» NULL egmentation

ITP 30002
Operating System

2023-04-06

Embedding A Free List

* Example: 4096-byte memory

head

>

size:

4088

next:

0

[virtual address: 16KB]
header: size field

header: next field (NULL is 0)

= the rest of the 4KB chunk

ptr

head

size: 100

magic: 1234567

size: 3980

next: 0

11

[virtual address: 16KB]

The 100 bytes now allocated

= The free 3980 byte chunk

1r ovuucs

Operating System
2023-04-06

sptr

head

size: 100

magic: 1234567

[virtual address: 16KB]

= 100 bytes still allocated

size: 100

magic: 1234567

= 100 bytes still allocated
(but about to be freed)

= 100-bytes still allocated

>
size: 100
magic: 1234567
>
size: 3764
next: 0

The free 3764-byte chunk

head

sptr

size: 100

magic: 1234567

'
size: 100
next: 16708
>
size: 100

magic: 1234567

size: 3764

[virtual address: 16KB]

= 100 bytes still allocated

(now a free chunk of memory)

= 100-bytes still allocated

next: 0

-

= The free 3764-byte chunk

on

ystem

Slab Allocator

 Alternate strategy
* Slab is one or more physically contiguous pages

* |f slab is full of used objects, next object allocated from empty
slab

-1f no empty slabs, new slab allocated

* Benefits include no fragmentation, fast memory request satisf
action

13

Segmentation

ITP 30002
Operating System

2023-04-06

Slab Allocation

kernel objects

3-KB
objects

7-KB
objects

caches

—7
/
—F
—

physically
contiguous
pages

14

Segmentation

ITP 30002
Operating System

2023-04-06

Buddy System

* Allocates memory from fixed-size segment consisting of physically-
contiguous pages

* Memory allocated using power-of-2 allocator
- Satisfies requests in units sized as power of 2
- Request rounded up to next highest power of 2

- When smaller allocation needed than is available, current chunk split into two
buddies of next-lower power of 2

e Continue until an appropriately-sized chunk is available

e E.g., assume 256KB chunk available, there is a request of 21 KB
- Splitinto A_ and A; of 128 KB each
* One further divided into B, and B of 64 KB

- One further into C, and C; of 32 KB each — one used to satisfy request
* Advantage — quickly coalesce unused chunks into larger chunk
* Disadvantage - fragmentation

15

Segmentation

ITP 30002
Operating System

2023-04-06

Buddy System Allocator

physically contiguous pages

256 KB

128 KB 128 KB
AL AR
64 KB 64 KB
By B
| |
32 KB| |32 KB
CL Cr

16

Segmentation

ITP 30002
Operating System

2023-04-06

	슬라이드 1: Segmentation OSTEP Chapters 16 & 17
	슬라이드 2: Motivation
	슬라이드 3: Approach
	슬라이드 4: Segmentation
	슬라이드 5: Which Segment A Memory Access is On?
	슬라이드 6: Segment Attributes
	슬라이드 7: Operating System Supports
	슬라이드 8: Free-Space Management
	슬라이드 9: Free List
	슬라이드 10: Allocation Strategies
	슬라이드 11: Embedding A Free List
	슬라이드 12
	슬라이드 13: Slab Allocator
	슬라이드 14: Slab Allocation
	슬라이드 15: Buddy System
	슬라이드 16: Buddy System Allocator

