ITP 30002 Operating System

Process

OSTEP Chapters 4 & 6

Shin Hong

Motivation

Process

ITP 30002
Operating System

2023-03-21

Process 3

* a running instance of a program
- program vs. process

- a kernel object that contains all information and resources given to
the running instance
* identified by a unique number (process ID)

* time-sharing of a CPU provides the illusion of many CPUs
- concurrency vs. parallelism

- mechanism: context switching ;
rocess

- policies: scheduling -
ITP 30002
Operating System

2023-03-21

Constitution of Program Execution Context 4

* memory states
- address space

* CPU states
- registers: general-purpose and special-purpose

* |/O information

Process

ITP 30002
Operating System

2023-03-21

Life Cycle of a Process

* process creation
- resource allocation
- loading

* eager manner
* lazy manner

CPU

+ code |
. static data
i+ heap

Process

P Loading:
rogram Takes on-disk program

///”H__—““‘\\ and reads it into the

w address space of process

Disk

Process

ITP 30002
Operating System

2023-03-21

Process Creation

e A process is identified and managed via a process identifier (pid)

* A parent process can spawn a child process to delegate a subtask
- A process can spawn multiple children processes
- A parent process can run concurrently with its children processes
- A child process, in turn create other processes, forming a tree of processes
- A parent can wait until a child (or children) terminates

* A parent and its children can share resources
- Children may share a subset of parent’s resources

* Process in UNIX
- a system call fork () system call creates a new process

- a child process duplicates the memory of its parent

Process |
Operating System,
Spring 2020

2023-03-21

A Tree of Processes in Linux

init
pid =1

kthreadd
pid = 2

login sshd
pid = 8415 pid = 3028

bash khelper pdflush sshd
pid = 8416 pid = 6 pid = 200 pid = 3610
Ps emacs tcsch PFOCGSS | Operating
pid = 9298 pid = 9204 pid = 4005 System, Spring 2020

2023-03-21

Life Cycle of a Process :

* Running state

- hold a CPU and execute instructions Descheduled

>

< Ready
* Ready state Scheduled

- can make a progress, but cannot hold a CPU /
e Blocked state /O: initih /O: done

- cannot make a progress since it needs to
wait for a certain condition (i.e., 1/0)

Blocked

* CPU scheduler makes a decision for process
state transitions Process

ITP 30002
Operating System

2023-03-21

Another Representation of Process Life Cycle

* As a process executes, the process state changes
-new: The process is being created
-ready: The process is waiting to be assigned to a processor
-running: Instructions are being executed
-waiting: The process is waiting for some event to occur
-terminated: The process has finished execution

admitted interrupt

scheduler dispatch

I/0O or event completion I/O or event wait

Process

ITP 30002
Operating System

2023-03-21

Process Termination 0

* Process executes last statement and then asks the operating system to
delete it using the exit () system call
- Returns status data from child to parent (viawait ())
- Process’ resources are deallocated by operating system

* Parent may terminate the execution of children processes using the
abort () system call. Some reasons for doing so:

- Child has exceeded allocated resources

- Task assigned to child is no longer required
- The parent is terminating, and the operating systems does not allow a child to

continue if its parent terminates
Process |
Operating System,
Spring 2020

2023-03-21

Example

Time Process; Process; Notes
1 Running Ready
2 Running Ready
3 Running Ready
- Running Ready Processp now done
5 - Running
6 - Running
7 - Running
8 = Running Process; now done
Time Processy Process; Notes
1 Running Ready
2 Running Ready
3 Running Ready Processg initiates I/O
-+ Blocked Running Processy is blocked,
5 Blocked Running so Process; runs
6 Blocked Running
7 Ready = Running I/O done
8 Ready = Running Process: now done
9 Running -
10 Running — Processg now done

11

Process

ITP 30002
Operating System

2023-03-21

Process Data Structure in Kernel: xv6 Example 12

e Called as Process Control Block
* Example of the xv6 kernel

// the information xv6 tracks about each process
// including its register context and state
struct proc {

// the registers xv6 will save and restore
// to stop and subsequently restart a process

RUNNABLE, RUNNING, ZOMBIE }; // current interrupt

}i

|
struct context { | char xmem; // Start of process memory
int eip; i uint sz; // Size of process memory
int esp; i char xkstack; // Bottom of kernel stack
int ebx; } // for this process
int ecx; i enum proc_state state; // Process state
int edx; i int pid; // Process ID
int esi; i struct proc #*parent; // Parent process
int edi; i void *chan; // If !zero, sleeping on chan
int ebp; i int killed; // If lzero, has been killed
b i struct file xofile[NOFILE]; // Open files
i struct inode *cwd; // Current directory
// the different states a process can be in i struct context context; // Switch here to run process
enum proc_state { UNUSED, EMBRYO, SLEEPING, - struct trapframe «tf; // Trap frame for the
|

uperaung >ystem

2023-03-21

13

Remainig Issues

* What's the overhead for virtualizing CPU?
* How to implement context switching?
* How to manage multiple processes?

* How a scheduler determines the next process to run?

Process

ITP 30002
Operating System

2023-03-21

Mechanisms for Process 14

* time-sharing
-run one process for a while, and then switch to another one
- issue
* managing control
* obtaining performance

* [imited direct execution
-run an application program directly on the CPU with some restriction

- restriction
* restricted memory accesses (H/W manipulation, resource allocation, etc.) Process
* restricted instruction --
ITP 30002

Operating System

2023-03-21

Dual Mode Operation: User Mode & Kernel Mode 15

* Most contemporary processors provide dual mode operation

* User mode
* for application program execution

* restriction is enforced
- a trap occurs when a process executes a restricted instruction under user mode

 Kernel model
* for kernel execution

 all privileged operations can be executed
Process

* What if an application program needs to execute privileged operations? (TP 30002
Operating System

2023-03-21

System Call 16

* A way of an application program to call a kernel to get a system service
* not possible to do this with the procedure call mechanism

* to execute a system call, a program must execute a trap instruction
- the operation of a trap instruction
* change the mode into the kernel mode
» store the current PC at a kernel stack
* jump to a predefined program location for handling the trap

e trap table
* trap handler Process

- each system call is identified by its unigue number (i.e. system-call number) -
ITP 30002

Operating System

2023-03-21

Example of System Call Workflow

17
0S @ run Hardware Program
(kernel mode) (user mode)
Create entry for process list
Allocate memory for program
Load program into memory
Setup user stack with argv
Fill kernel stack with reg/PC
return-from-trap

restore regs
(from kernel stack)
move to user mode
jump to main
Run main()
Call system call
trap into OS5
save regs
(to kernel stack)
move to kernel mode
jump to trap handler
Handle trap
Do work of syscall
return-from-trap
restore regs Process

(from kernel stack)
move to user mode

jump to PC after trap ITP 30002
Operating System

return from main
trap (via exit (})

Free memory of process
Remove from process list 2023-03-21

Switching Between Processes 18

* How can OS regain control of the CPU when it is given to an
application program?

* Natural chance: blocked operation

* Periodic scheduling
- Cooperative approach
* blocked operation
- Preemptive scheduling approach Process
e exploit a timer interrupt and its interrupt handler |'|'p 30002

* requires HW support OlperEiii SiEEm

2023-03-21

Preemptive Scheduling 19

* scheduler: a kernel module that determines which process to
dispatch at a chance (e.g., timer interrupt)

e context switch: a kernel module that is executed to switch
processes running on a CPU
- registered as a timer interrupt handler

- steps
* store the process status of a currently-running process to memory
- CPU states Process
* find the stored status of the next process from the memory I_'_I'P 20005
* restore the stored status at the CPU Operating System

* return the control back to the application program
2023-03-21

Example

OS @ boot
(kernel mode)

Hardware

initialize trap table

start interrupt timer

remember addresses of...
syscall handler
timer handler

start timer
interrupt CPU in X ms

OS @ run Hardware Program
(kernel mode) (user mode)
Process A
timer interrupt
save regs(A) — k-stack(A)
move to kernel mode
jump to trap handler
Handle the trap
Call switch () routine
save regs(A) — proc_t(A)
restore regs(B) < proc_t(B)
switch to k-stack(B)
return-from-trap (into B)
restore regs(B) < k-stack(B)
move to user mode
jump to B’s PC
Process B

20

Process

ITP 30002
Operating System

2023-03-21

The xv6 Context Switch Code

OO0 Ny = W N =

_ =
[T R

13

20
21
22
23
24
25
26
27
28

void swtch(struct context *x=*xold,

#

Save current register context in old
and then load register context from new.

.globl
swtch:

swtch

Save old registers

movl
popl
mov 1l
movl
movl
movl
movl
movl
movl

4 (%esp),
O(%eax)
%esp,
%ebx,
%$ecx,
Sedx,

sedi,
sebp,

Seax

o\°

ea

D

Y e K K

o\

o\®

o\°

4 (
8 (
12
16
$esi, 20
24
28

o\°
® ® d® @ D

o\®

a

#
#
id
#

KoX MW M X —

)
)
)
)
)

Load new registers

movl
movl
movl
movl
movl
movl
movl
movl

4 (%Sesp),

Seax #

%ebp #
Sedi
$esi

put old ptr into eax
save the old IP

and stack

and other registers

put new ptr into eax
restore other registers

stack is switched here
return addr put in place
finally return into new ctxt

struct context *new);

21

Process

ITP 30002
Operating System

2023-03-21

	슬라이드 1: Process OSTEP Chapters 4 & 6
	슬라이드 2: Motivation
	슬라이드 3: Process
	슬라이드 4: Constitution of Program Execution Context
	슬라이드 5: Life Cycle of a Process
	슬라이드 6: Process Creation
	슬라이드 7: A Tree of Processes in Linux
	슬라이드 8: Life Cycle of a Process
	슬라이드 9: Another Representation of Process Life Cycle
	슬라이드 10: Process Termination
	슬라이드 11: Example
	슬라이드 12: Process Data Structure in Kernel: xv6 Example
	슬라이드 13: Remainig Issues
	슬라이드 14: Mechanisms for Process
	슬라이드 15: Dual Mode Operation: User Mode & Kernel Mode
	슬라이드 16: System Call
	슬라이드 17: Example of System Call Workflow
	슬라이드 18: Switching Between Processes
	슬라이드 19: Preemptive Scheduling
	슬라이드 20: Example
	슬라이드 21: The xv6 Context Switch Code

