
Process

OSTEP Chapters 4 & 6

Shin Hong

ITP 30002 Operating System

Motivation

2023-03-21

Process
--
ITP 30002
Operating System

2

Process

• a running instance of a program
- program vs. process

- a kernel object that contains all information and resources given to
the running instance
• identified by a unique number (process ID)

• time-sharing of a CPU provides the illusion of many CPUs
- concurrency vs. parallelism

- mechanism: context switching

- policies: scheduling

2023-03-21

Process
--
ITP 30002
Operating System

3

Constitution of Program Execution Context

• memory states

- address space

• CPU states

- registers: general-purpose and special-purpose

• I/O information

2023-03-21

Process
--
ITP 30002
Operating System

4

Life Cycle of a Process

• process creation
- resource allocation

- loading
• eager manner

• lazy manner

2023-03-21

Process
--
ITP 30002
Operating System

5

Process Creation

• A process is identified and managed via a process identifier (pid)

• A parent process can spawn a child process to delegate a subtask
- A process can spawn multiple children processes

- A parent process can run concurrently with its children processes

- A child process, in turn create other processes, forming a tree of processes

- A parent can wait until a child (or children) terminates

• A parent and its children can share resources
- Children may share a subset of parent’s resources

• Process in UNIX
- a system call fork() system call creates a new process

- a child process duplicates the memory of its parent

2023-03-21

Process |
Operating System,
Spring 2020

6

A Tree of Processes in Linux

init

pid = 1

sshd

pid = 3028

login

pid = 8415
kthreadd

pid = 2

sshd

pid = 3610

pdflush

pid = 200

khelper

pid = 6

tcsch

pid = 4005
emacs

pid = 9204

bash

pid = 8416

ps

pid = 9298

2023-03-21

Process | Operating

System, Spring 2020

7

Life Cycle of a Process

• Running state

- hold a CPU and execute instructions

• Ready state
- can make a progress, but cannot hold a CPU

• Blocked state
- cannot make a progress since it needs to

wait for a certain condition (i.e., I/O)

• CPU scheduler makes a decision for process
state transitions

2023-03-21

Process
--
ITP 30002
Operating System

8

Another Representation of Process Life Cycle

• As a process executes, the process state changes
-new: The process is being created
- ready: The process is waiting to be assigned to a processor
- running: Instructions are being executed
-waiting: The process is waiting for some event to occur
- terminated: The process has finished execution

2023-03-21

Process
--
ITP 30002
Operating System

9

Process Termination

• Process executes last statement and then asks the operating system to
delete it using the exit() system call

- Returns status data from child to parent (via wait())

- Process’ resources are deallocated by operating system

• Parent may terminate the execution of children processes using the
abort() system call. Some reasons for doing so:

- Child has exceeded allocated resources

- Task assigned to child is no longer required

- The parent is terminating, and the operating systems does not allow a child to
continue if its parent terminates

2023-03-21

Process |
Operating System,
Spring 2020

10

Example

2023-03-21

Process
--
ITP 30002
Operating System

11

Process Data Structure in Kernel: xv6 Example

2023-03-21

Process
--
ITP 30002
Operating System

12

• Called as Process Control Block
• Example of the xv6 kernel

Remainig Issues

• What’s the overhead for virtualizing CPU?

• How to implement context switching?

• How to manage multiple processes?

• How a scheduler determines the next process to run?

2023-03-21

Process
--
ITP 30002
Operating System

13

Mechanisms for Process

• time-sharing

- run one process for a while, and then switch to another one

- issue

• managing control

• obtaining performance

• limited direct execution

- run an application program directly on the CPU with some restriction

- restriction

• restricted memory accesses (H/W manipulation, resource allocation, etc.)

• restricted instruction

2023-03-21

Process
--
ITP 30002
Operating System

14

Dual Mode Operation: User Mode & Kernel Mode

• Most contemporary processors provide dual mode operation

• User mode
• for application program execution

• restriction is enforced

- a trap occurs when a process executes a restricted instruction under user mode

• Kernel model
• for kernel execution

• all privileged operations can be executed

• What if an application program needs to execute privileged operations?

2023-03-21

Process
--
ITP 30002
Operating System

15

System Call

• A way of an application program to call a kernel to get a system service

• not possible to do this with the procedure call mechanism

• to execute a system call, a program must execute a trap instruction

- the operation of a trap instruction

• change the mode into the kernel mode

• store the current PC at a kernel stack

• jump to a predefined program location for handling the trap

• trap table

• trap handler

- each system call is identified by its unique number (i.e. system-call number)

2023-03-21

Process
--
ITP 30002
Operating System

16

Example of System Call Workflow

2023-03-21

Process
--
ITP 30002
Operating System

17

Switching Between Processes

• How can OS regain control of the CPU when it is given to an
application program?

• Natural chance: blocked operation

• Periodic scheduling
- Cooperative approach

• blocked operation

- Preemptive scheduling approach

• exploit a timer interrupt and its interrupt handler

• requires HW support

2023-03-21

Process
--
ITP 30002
Operating System

18

Preemptive Scheduling

• scheduler: a kernel module that determines which process to
dispatch at a chance (e.g., timer interrupt)

• context switch: a kernel module that is executed to switch
processes running on a CPU
- registered as a timer interrupt handler

- steps

• store the process status of a currently-running process to memory

- CPU states

• find the stored status of the next process from the memory

• restore the stored status at the CPU

• return the control back to the application program
2023-03-21

Process
--
ITP 30002
Operating System

19

Example

2023-03-21

Process
--
ITP 30002
Operating System

20

The xv6 Context Switch Code

2023-03-21

Process
--
ITP 30002
Operating System

21

	슬라이드 1: Process OSTEP Chapters 4 & 6
	슬라이드 2: Motivation
	슬라이드 3: Process
	슬라이드 4: Constitution of Program Execution Context
	슬라이드 5: Life Cycle of a Process
	슬라이드 6: Process Creation
	슬라이드 7: A Tree of Processes in Linux
	슬라이드 8: Life Cycle of a Process
	슬라이드 9: Another Representation of Process Life Cycle
	슬라이드 10: Process Termination
	슬라이드 11: Example
	슬라이드 12: Process Data Structure in Kernel: xv6 Example
	슬라이드 13: Remainig Issues
	슬라이드 14: Mechanisms for Process
	슬라이드 15: Dual Mode Operation: User Mode & Kernel Mode
	슬라이드 16: System Call
	슬라이드 17: Example of System Call Workflow
	슬라이드 18: Switching Between Processes
	슬라이드 19: Preemptive Scheduling
	슬라이드 20: Example
	슬라이드 21: The xv6 Context Switch Code

