ITP 30002 Operating System

Scheduling

OSTEP Chapter 7

Shin Hong

Motivation

Scheduling

--

ITP 30002 Operating System

Scheduling Policy

- scheduling policy
 - In which order processes would be dispatched
 - -How much amount of time would be given to a process when it's dispatched

workload

- -characteristics of the running processes in a system
- -derived from the program properties or captured by runtime monitoring

Scheduling

_.

ITP 30002 Operating System

Workload Assumption for Discussion

- 1. Each job runs for the same amount of time.
- 2. All jobs arrive at the same time.
- 3. Once started, each job runs to completion.
- 4. All jobs only use the CPU (i.e., they perform no I/O)
- 5. The run-time of each job is known

Scheduling

--

ITP 30002 Operating System

Scheduling Metrics

- scheduling metric: a measurement of goodness of a scheduling policy
- turnaround time: the time at which the job completes minus the time at which the job arrived
 - Upon the assumptions, it's the same as the time to complete a process
 - performance metric
- response time: the time from when a job is arrived to the first time it is scheduled
 - -fairness metric

Scheduling

--

ITP 30002 Operating System

First In First Out (FIFO) Scheduling Policy

- First come, first served
- Pros: clear, simple, easy to implement, lightweight

20

40

Cons: convey effect

- requires 10

60

Time

80

100

120

Scheduling ITP 30002 **Operating System**

2023-03-21

110 = (100 + 110 + 120) / 3

Shortest Job First (SJF) Scheduling Policy

- runs the shortest job first, then the next shortest, and so on
- optimal with respect to the average turnaround time

20

40

60

Time

80

100

120

average turnaround time

Scheduling ITP 30002 **Operating System**

Shortest Time-to-competition First (STCF)

- preemptive version of SJF
 - -schedules the one that has the least time left at a new job arrives

- Process A
 - arrives at 0
 - requires 100
- Process B
 - arrives at 10
 - require 10
- Process C
 - arrives at 10
 - require 10

Scheduling --ITP 30002

Operating System

Round Robin (RR) Scheduling Policy

- Response time: the time from when a job arrives to the first time it is scheduled/responed
 - interactive performance measure
- RR runs a job for a time slice (scheduling quantum) and then switches to the next one in the ready queue
 - trace off between responsiveness and context switching overhead

Scheduling
-ITP 30002
Operating System

CPU Burst and I/O Burst Cycle

CPU burst

I/O burst

CPU burst

I/O burst

CPU burst

I/O burst

•

load store add store read from file

wait for I/O

store increment index write to file

wait for I/O

load store add store read from file

wait for I/O

•

 process execution consists of a cycle of CPU execution and I/O wait

- CPU burst followed by I/O burst
- CPU burst distribution is of main concern

Scheduling

--

ITP 30002 Operating System

Incorporating I/O

- The scheduler makes a decision when an I/O gets completed and the blocked process gets back the ready queue
- It would be better to schedule the one with shorter CPU burst first, and then the one with the longer CPU-burst
 - an interactive process has short CPU-burst time and gets scheduled much frequently
 - -CPU- and I/O-burst can be overlapped, thus CPU can be utilized better

Scheduling
-ITP 30002
Operating System

c.f. Time Scale of System Latencies

Event	Latency	Scaled
1 CPU cycle	0.3 ns	1 s
Level 1 cache access	0.9 ns	3 s
Level 2 cache access	2.8 ns	9 s
Level 3 cache access	12.9 ns	43 s
Main memory access (DRAM, from CPU)	120 ns	6 min
Solid-state disk I/O (flash memory)	50–150 μs	2-6 days
Rotational disk I/O	1–10 ms	1-12 months
Internet: San Francisco to New York	40 ms	4 years
Internet: San Francisco to United Kingdom	81 ms	8 years
Internet: San Francisco to Australia	183 ms	19 years
TCP packet retransmit	1–3 s	105-317 years
OS virtualization system reboot	4 s	423 years
SCSI command time-out	30 s	3 millennia
Hardware (HW) virtualization system reboot	40 s	4 millennia
Physical system reboot	5 m	32 millennia

Scheduling --ITP 30002

Operating System